
The Quality Gate and the Application of Momenta in Infinite
Boundaries.

JOERG VOLKMANN
International Laboratory of Theoretical and

Mathematical Physics of Molecules and Crystals
Ufa Federal Research Centre,
Russian Academy of Sciences

Prospect Octyabrya, 71, Ufa, 450054 - RUSSIA
RUSSIA

Joerg_Volkmann@gmx.net

NORBERT SUEDLAND
Aage GmbH

Roentgenstrasse 24, 73431 Aalen
GERMANY

Norbert.Suedland@Aage-Leichtbauteile.de

NAIL MIGRANOV
Department of Medical Physics
Bashkir State Medical University

Lenin Str. 3, Ufa, 450008,
RUSSIA

ufangm@yahoo.co.uk

Abstract: In this paper the concept of calculating the momenta in infinite boundaries is shown The Quality Gate in
Science also plays a significant role. Based on Einstein’s observation on ordinary diffusion, generalisations regarding
time-fractional and space fractional derivatives are investigated. For both cases the fundamental solu- tion of a Cauchy
problem with Dirac’s delta function as initial distribution is determined. From these solutions the momenta are
calculated. It could be shown that these momenta exist for the solution of the time fractional differential equation. The
expressions for the momenta in infinite boundaries of the space fractional differential
equations can be calculated and are only of academic interest because in most cases they do not exist. Furthermore is
shown, that the momenta for the time fractional equation are always monotonically increasing functions. This draws our
attention to the question how processes can be described in which the momenta are not monotonously increasing
functions. Experiments with such behaviour can be found in practice.
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1 Introduction
Since the famous work of Einstein (* 13.03.1879
Ulm, + 18.04.1955 Princton, New Jersey, US) and
Smoluchowski (*28.05.1872 Mödling, + 05.09.1917
Krakau) there is a relationship between the statistical
quantity variance of a diffusion process and the diffu-
sion constant D [1, 2, 3].

Starting point for this investigation is the diffusion
equation of the form

𝜕 𝜚
𝜕 𝑡 − 𝐷 𝜕2 𝜚

𝜕 𝑥2 = 𝑠(𝑡, 𝑥).
Here 𝐷 is the diffusion constant and the equation
in general is formulated as an inhomogeneous one.
An important role in this investigation plays the fun-
damental solution 𝐹(𝑡, 𝑥) which solves the related
Cauchy problem

𝜕 𝐹(𝑡, 𝑥)
𝜕 𝑡 − 𝐷 𝜕2 𝐹(𝑡, 𝑥)

𝜕 𝑥2 = 0,
𝐹(𝑡, 𝑥)∣𝑡→0 = 𝛿(𝑥).

In this case 𝛿(𝑥) is the Dirac delta function. This so-
lution is of the form

𝐹(𝑡, 𝑥) =
exp(− 𝑥2

4 𝐷 𝑡)
√

4𝜋 𝐷𝑡
. (1)

The comparison with the Gaussian distribution [4]

𝑓(𝑡, 𝑥) =
exp(− (𝑥−𝜇)2

2𝜎2 )
√

2𝜋 𝜎2 ,

where 𝜇 is the expectation value and 𝜎2 the variance
of the distribution function leads to the statement

𝜇 = 0, 𝜎2 = 2𝐷𝑡. (2)

In [5] it was shown that this result can be calculated
in a direct way. This brings the statistical momenta
into focus.

In various experiments we can observe deviations
from this linear behaviour (2) (see f. e. [6, 7, 8, 9, 10,

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2020.15.18 Joerg Volkmann, Norbert Suedland, Nail Migranov 

E-ISSN: 2224-3461 138 Volume 15, 2020



11, 12]) which can be summarized by the application
of a power law form (f. e. [13, 14, 15])

𝜎2 = 2𝐷𝛼𝑡𝛼, 𝛼 ∈ ℚ.
Metzler and Klafter used in [16] this relation to clas-
sify diffusion processes into subdiffusion, usual dif-
fusion and superdiffusion.

But what does this situation mean in practice? In
order to explain it in more detail the following frac-
tional diffusion equation is considered:

1
Γ(1 − 𝛼) ∫

𝑡

0

1
(𝑡 − 𝜏)−𝛼

𝜕 𝑇 (𝜏, 𝑥)
𝜕 𝜏 d𝜏 = 𝑎𝜕2 𝑇 (𝑡, 𝑥)

𝜕 𝑥2 . (3)

We are looking for a so called fundamental solution,
which is given by

Definition 1. Consider the following Cauchy-
problem:

𝜕𝛼 𝐹(𝑡, 𝑥)
𝜕 𝑡𝛼 − 𝐷 𝜕2 𝐹(𝑡, 𝑥)

𝜕 𝑥2 = 0, (4)

𝐹(𝑡, 𝑥)∣𝑡→0 = 𝛿(𝑥),

where 𝛿(𝑥) is Dirac’s delta-function and

𝜕𝛼 𝐹(𝑡, 𝑥)
𝜕 𝑡𝛼 = 1

Γ(1 − 𝛼) ∫
𝑡

0

1
(𝑡 − 𝜏)−𝛼

𝜕 𝑇 (𝜏, 𝑥)
𝜕 𝜏 d𝜏.

The solution of (4) is called the fundamental solution
of the Cauchy-problem (4).

In order to get the solution of (3) a Laplace trans-
formation from 𝑡 to 𝑝 is applied. We find with 𝑡 >
0, 𝛼 > 0

𝑝−1+𝛼 (𝑝ℒ𝑇 (𝑝, 𝑥) − 𝛿(𝑥)) = 𝑎𝜕2ℒ𝑇 (𝑝, 𝑥)
𝜕𝑥2 . (5)

Here ℒ𝑇 (𝑝, 𝑥) ist the Laplace transform of 𝑇 (𝑡, 𝑥).
To this equation a Fourier-transformation from 𝑥

to 𝜔 is applied. This leads to

𝑝−1+𝛼 (−1 + 𝑝 ℱℒ𝑇 (𝑝, 𝜔)) = −𝑎 𝜔2 ℱℒ𝑇 (𝑝, 𝑥). (6)

This equation can be solved for the Fourier-Laplace-
transform ℱℒ𝑇 (𝑝, 𝜔) of 𝑇 (𝑡, 𝑥). It is

ℱℒ𝑇 (𝑝, 𝜔) = 𝑝−1+𝛼

𝑝𝛼 + 𝑎𝜔2 . (7)

This expression has to be transformed back into the
original space. To do this first an inverse Fourier
transformation from 𝜔 to 𝑥 has to be applied. This
leads to

ℒ𝑇 (𝑝, 𝜔) =
exp (−√𝑝𝛼𝑥2

𝑎 ) 𝑝𝛼−1

2√𝑎√𝑝𝛼 (8)

with 𝑎 > 0 and 𝛼 > 0. In a second step the inverse
Laplace transformation has to be applied. The result
is

𝑇 (𝑡, 𝑥) = (9)
1

𝛼 𝑥 ℋ1,0
1,1 [𝑎− 1𝛼 𝑥 2𝛼

𝑡 ∣ {} | {{1, 1}}
{{1, 2𝛼}} | {} ] .

In order to simplify this solution a Mellin transforma-
tion from 𝑎 to 𝐴 has to be done. The result becomes
with 𝛼 > 0 and 𝑡 > 0

ℳ𝐴
𝑎 [𝑇 (𝑡, 𝑥)] = 𝑡−𝐴𝛼 𝑥−1+2𝐴 Γ(1 − 2𝐴)

Γ(1 − 𝐴𝛼) . (10)

The back-transformation is

𝑇 (𝑡, 𝑥) = (11)
1
𝑥 ℋ1,0

1,1 [𝑡−𝛼 𝑥2

𝑎 ∣ {} | {{1, 𝛼}}
{{1, 2}} | {} ] .

It is obviously, that the case 𝛼 = 1 in (3) leads to
fundamental solution of the usual heat equation which
is of the form (1). Taking (11), putting𝛼 → 1, making
a Mellin transformation one arrives with 𝛼 > 0 and
𝑥 > 0 at

ℳ𝐴
𝑎 [𝑇 (𝑡, 𝑥)] =

(𝑥2
𝑡 )𝐴 Γ(1 − 2𝐴)
𝑥Γ(1 − 𝐴𝛼) . (12)

The inverse Mellin transformation gives

𝑇 (𝑡, 𝑥)∣𝑡→1 =
exp(− 𝑥2

4𝑎𝑡)
2
√

𝑎𝜋𝑡 . (13)

To show the fulfillment of the initial conditionwe start
with a Mellin transformation of (11) from 𝑥 to 𝑋 with
𝑡 > 0, 𝑎 > 0, 𝛼 > 0. The result is

ℳ𝐴
𝑎 [𝑇 (𝑡, 𝑥)] = 𝑎(− 1

2 + 𝑋
2 ) 𝑡− 𝛼

2 + 𝑋𝛼
2 Γ(𝑥)

2Γ(1 − 𝛼
2 + 𝑋𝛼

2 ) . (14)

If 𝑡 → 0, one will find

ℳ𝐴
𝑎 [𝑇 (𝑡, 𝑥)] ∣𝑡→0 = 𝑎(− 1

2 + 𝑋
2 ) 0− 𝛼

2 + 𝑋𝛼
2 Γ(𝑥)

2Γ(1 − 𝛼
2 + 𝑋𝛼

2 ) . (15)

The inverseMellin transformation leads to the Dirac’s
delta function which is the initial condition.

The check, wether the solution (11) is performed
in Laplace Space, the Laplace-transformed solution

ℒ𝑇 (𝑝, 𝑥) = (16)
1
2𝑎− 1𝛼 − −2+𝛼

2𝛼 exp (−𝑝 𝛼
2 𝑥√𝑎 ) 𝑝 1

2 (−2+𝛼)𝑥−1+ 2𝛼 + −2+𝛼𝛼
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is inserted into the Laplace-transformed equation (5).
The equation is thus fulfilled identically.

To ensure the quality of scientific results the
quality gate is introduced in [5, 17] analogous to
[18]. It says

Quality gate [5, 17]
In order to guarantee the quality of results, two or
three different and independent ways have to be
presented.

The quality gate is now applied in these calcula-
tions by reversing the inverse transformations. Start-
ing with the inverse Laplace transformation follows
in the Fourier space with 𝛼 > 0, 𝜔 > 0

ℱ𝑇 (𝑡, 𝜔) = 𝐸𝛼,1 [−𝑎 𝑡𝛼 𝜔2] , (17)

where

𝐸𝛼,𝛽 [𝑧] =
∞

∑
𝑘=0

𝑧𝑘

Γ(𝛼 𝑘 + 𝛽) (18)

is the generalized Mittag-Leffler function with 𝛼, 𝛽 ∈
ℂ, ℜ(𝛼) > 0, 𝑅𝑒(𝛽) > 0, 𝑧 ∈ ℂ (see f. e. [19]).

The application of the inverse Fourier-
transformation leads to

𝑇 (𝑡, 𝑥) = (19)

𝑡− 𝛼
2 ℋ2,0

1,2 [𝑡− 𝛼
2 𝑥

2√𝑎 ∣ {} | {{ 2−𝛼
2 , 𝛼

2 }}
{{0, 1

2 }, { 1
2 , 1

2 }} | {} ] .

In order to simplify this Fox-function a Mellin-
transformation from 𝑎 to 𝐴 is applied to (19):

2 𝜋 𝛿(𝐴) 𝑇 (𝑡, 𝑥) = 𝑡−𝐴𝛼𝑥−1+2𝐴Γ(1.2𝐴)
Γ(1 − 𝐴𝛼) . (20)

The inverse Mellin transform of (20) from 𝐴 to 𝑎
gives (11).

For the third calculation path according to the
Quality Gate, the sequence of the integral transfor-
mations for the original equation is changed. Here the
original equation is changed by a term responsible for
the initial conditions. So the equation became

1
Γ(1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝛼 𝜕𝑇

𝜕𝜏 dτ − t−αδ(x)
Γ(1 − α) = a∂2T

∂x2 .

Starting now with a Fourier-transformation, the result
is

1
Γ(1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝛼 𝜕ℱ𝑇

𝜕𝜏 dτ − t−α

Γ(1 − α) =

−𝑎 𝜔2 |ℱ𝑇 (𝑡, 𝜔).
If we now apply the Laplace transformation to this
equation, neglecting the initial conditions which have
already been considered, we arrive at

−𝑝−1+𝛼 + 𝑝𝛼ℒℱ𝑇 (𝑝, 𝜔) = − 𝑎 𝜔2 ℒℱ𝑇 (𝑝, 𝜔).

Solving this equation for the Laplace-Fourier-
transform, it is

ℒℱ𝑇 (𝑝, 𝜔) = 𝑝−1+𝛼

𝑝𝛼 + 𝑎𝜔2 .

This solution is identical to (7). Thus three calculation
paths have been shown according to the quality gate.

In the following the momenta of the solution (11)
shall be calculated. In addition, the technical report
[5, 17] introduced the concept of statistical momenta
in infinite boundaries for evolutionary processes and
discussed the example of heat conduction. The ex-
ample of heat conduction has been investigated there.
Starting point for the considerations was the

Definition 2. [4]
Let 𝑋 be a continuous random variable with the re-
lated density 𝑓 of a non-normalized distribution func-
tion 𝐹(𝑋). Then

𝑚𝑖 = ∫
∞

−∞
𝑥𝑖 𝑓(𝑥)d𝑥 = < 𝑥𝑖, 𝑓(𝑥) > (21)

is the 𝑖-th momentum and

𝜇𝑖 = ∫
∞

−∞
(𝑥 − 𝑚1

𝑚0
)

𝑖 𝑓(𝑥)
𝑚0

d𝑥 (22)

the 𝑖-th normalized central momentum.

In this definition the integration over the entire real
axis with infinite boundaries has to be done.

Here the definition especially for the central mo-
mentum is different from the usual one which is

𝜇𝑖(𝑋) = ∫
+∞

−∞
(𝑥 − 𝜇)𝑖 𝑓(𝑥)𝑑𝑥 (23)

with probability density function 𝑓(𝑥) which is the 𝑖-
th momentum about the mean 𝜇 [20].

In the mathematical case a random variable 𝑋 is
called continuous, if there exists a non-negative func-
tion 𝑓(𝑥), for which for real 𝑥 the relation

𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡

is fullfilled. 𝐹(𝑥) is the distribution function of the
random variable 𝑋. Furthermore is

𝐹(∞) = ∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 1.

The last integral represents the norm and so the dis-
tribution function is normalized [21].

But if one deals with experimental data this con-
dition is not self-evident. Experimental distribution
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functions of many kinds like the temperature distribu-
tion in a rod do not have this property. In order to ap-
ply the statistical theory of momenta this property has
to be generated by calculating the norm and by nor-
malizing the distribution function. The consequence
is that the mean value in the central momentum has to
be substituted by the normalized mean value 𝑚1𝑚0

.
In order to establish the quality gate in the area

of the calculation of momenta another definition con-
cerning the momentum generating function is neces-
sary:
Definition 3. [22]
A function 𝑔(𝑡) defined as follows

𝑔(𝑡) = 𝐸 (e𝑡 𝑋) =
∞

∑
𝑗=0

𝑚𝑗 𝑡𝑗

𝑗! =

𝐸 (
∞

∑
𝑗=0

𝑋𝑗 𝑡𝑗

𝑗! ) =
∞

∑
𝑗=1

e𝑡 𝑋𝑗 𝑝(𝑋𝑗) (24)

is called the momentum generating function.
By differentiating 𝑔(𝑡)with respect to 𝑡 and setting

𝑡 → 0,
𝑑𝑖

𝑑𝑡𝑖 𝑔(𝑡)∣
𝑡→0

= 𝑔(𝑖)(0) =

∞
∑
𝑗=1

𝑗! 𝑚𝑗 𝑡𝑗−𝑖

(𝑗 − 𝑖)! 𝑗! ∣
𝑡→0

= 𝑚𝑖 (25)

can be found. The momentum integral of definition
2 is setting in relation to the Mellin transformation,
which is defined by

ℳ𝑧
𝑥 [𝑓(𝑥)] = ∫

∞

0
𝑥𝑧−1𝑓(𝑥)dx. (26)

Assuming symmetrical boundaries for the integration
and a symmetrical distribution function the relation-
ship between themomenta and theMellin transforma-
tion of a function is

⟨𝑥𝑚, 𝑓(𝑥)⟩ = 2ℳ𝑚+1
𝑥 [𝑓(𝑥)] =

= 2 ∫
∞

0
𝑥𝑚+1−1𝑓(𝑥)dx. (27)

The application of this to the solution (11) gives

⟨𝑥𝑚, 𝑇 (𝑡, 𝑥)⟩ = (28)
2ℳ𝑚+1

𝑥 [
1
𝑥ℋ1,0

1,1 [𝑡−𝛼𝑥2

𝑎 ∣ {} | {{1, 𝛼}}
{{1, 2}} | {} ]

]

= 𝑎 𝑚
2 𝑡 𝑚𝛼

2 Γ(1 + 𝑚)
Γ(1 + 𝑚𝛼

2 ) .

By putting 𝑚 → 2 follows

𝑚2 = 2𝑎𝑡𝛼

Γ(1 + 𝛼). (29)

To fulfill the quality gate the method with the momen-
tum generating function is applied. In order to do this
we have to solve the integral

𝑔(𝜏) = (30)

∫
∞

−∞
𝑒𝜏 𝑥 1

𝑥 ℋ1,0
1,1 [𝑡−𝛼 𝑥2

𝑎 ∣ {{}} | {{1, 𝛼}}
{{1, 2}} | {} ] 𝑑𝑥.

This expression looks like a Laplace transformation.
Assuming again a symmetrical distribution function
with symmetrical boundaries follows

𝑔(𝜏) =

2 ∫
∞

0
𝑒𝜏 𝑥 1

𝑥 ℋ1,1
1,0 [𝑡−𝛼 𝑥2

𝑎 ∣ {{}} | {{1, 𝛼}}
{{1, 2}} | {} ] 𝑑𝑥 =

𝐸 𝛼
2

[−√𝑎 𝑡 𝛼
2 𝜏2] (31)

with the generalizedMittag -Leffler function (18). To
calculate the variance this expression has to be differ-
entiated twice with respect to 𝜏 . This leads to

𝑑2𝑔
𝑑𝜏2 = 𝑎𝑡𝛼

1Ψ1 [ {3, 1}
{1 + 𝛼, 𝛼

2 } ∣ − √𝑎𝑡 𝛼
2 𝜏] . (32)

Here

𝑝Ψ𝑞 [𝑧∣ {𝑎𝑝, 𝐴𝑝}
{𝑏𝑞, 𝐵𝑞} ] =

∞
∑
𝑛=0

∏𝑝
𝑗=1 Γ (𝑎𝑗 + 𝑛𝐴𝑗)

∏𝑞
𝑗=1 Γ (𝑏𝑗 + 𝑛𝐵𝑗)

𝑧𝑛

𝑛 ! (33)

with 𝑎𝑖, 𝑏𝑗 ∈ ℂ, 𝐴𝑖, 𝐵𝑗 ∈ ℝ is called the Wright gen-
eralized hypergeometric function [19].

For the second momentum 𝑚2 the parameter has
to be zero. This gives

𝑚2 = 𝑑2𝑔
𝑑𝜏2 ∣𝜏→0 (34)

= 2𝑎𝜏𝛼

Γ(1 + 𝛼).

Then the variance of the solution is

𝜎2 = 𝑚2
𝑚0

− 𝑚2
1𝑚2

0 (35)

= 𝑎𝑡𝛼 ( 2
Γ(1 + 𝛼) − 1

Γ(1 + 𝛼
2 )2 ) .

This presented concept is applied to the Lévy and
the Cauchy distribution, and the application of the
Quality Gate is also shown.

These distributions play a significant role for ex-
ample in the theory of turbulence. Starting from var-
ious scaling laws Chen [23] motivated an equation of
the form

𝜕𝑃(𝑡, 𝑥)
𝜕𝑡 = (−Δ) 𝛼

2 𝑃(𝑡, 𝑥) (36)
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with 0 < 𝛼 ≤ 2. The case 𝛼 = 2 should give the
usual heat equation with the Gauss distribution as fun-
damental solution. But a closer look shows that the
problem has to be formulated by

𝜕𝑃(𝑡, 𝑥)
𝜕𝑡 = −𝐷 (−Δ) 𝛼

2 𝑃(𝑡, 𝑥),
𝑃 (0, 𝑥) = 𝛿(𝑥). (37)

Here 𝛼 and 𝐷 are constants with 0 < 𝛼 ≤ 2, 𝐷 > 0
and 𝛿(𝑥) represents Dirac’s delta function. Further-
more (−Δ) 𝛼

2 is called Riesz-operator and is defined
by

ℱ𝜔
𝑥 ((−Δ) 𝛼

2 ) 𝑢 = |𝜔|𝛼ℱ𝜔
𝑥(𝑢). (38)

In order to solve equation (37) in a first step a Fourier-
transform from 𝑥 to 𝜔 is applied to this equation. The
result is

𝜕ℱ
𝜕𝑡 (𝑡, 𝜔) = −𝐷 𝜔𝛼 ℱ (𝑡, 𝜔) , (39)

where ℱ is the Fourier transform of 𝑃 . Furthermore
the initial condition has to be transformed, too. One
can find

𝑃(0, 𝑥) = 𝛿(𝑥) ⇔ ℱ (0, 𝜔) = 1. (40)

The second step now is to apply the Laplace transform
from 𝑡 to 𝑝 to these equations. By taking into account
the transformed initial condition follows

ℒℱ (𝑝, 𝜔) = 1
𝑝 + 𝐷 𝜔𝛼 . (41)

ℒℱ is the Laplace transform of the Fourier transform
of 𝑃 .

In order to fullfil the quality gate a second way
can be chosen. It is to solve the ordinary differential
equation (39) directly inclusive the initial condition
(40). The solution is

ℱ (𝑡, 𝜔) = 𝑒−𝐷 𝑡 𝜔𝛼 . (42)

A Laplace transform from 𝑡 to 𝑝 leads to the solution
(41). Both ways of calculation give identical results.

The result (41) now has to be expressed in the orig-
inal coordinates. First an inverse Laplace transform
has to be applied to (41). This leads to

ℱ (𝑡, 𝜔) = 𝑒−𝐷 𝑡 𝜔𝛼 ,
which is identical to (42).

After this an inverse Fourier transform has to be
applied. This leads to the solution

𝑃(𝑡, 𝑥) =
𝐷− 1𝛼 𝑡− 1𝛼

√𝜋 𝛼 1Ψ1 ( {{ 1𝛼 2𝛼}}
{{1

2 1}} ∣ − 1
4𝐷− 2𝛼 𝑡− 2𝛼 𝑥2) .

with the Wright hypergeometric function (33). This
representation for the solution can be changed. In or-
der to do this a Mellin transformation from 𝐷 to �̃�
has to be done. This leads to

ℳ�̃�
𝐷 [𝑃 (𝑡, 𝑥)] =

2−�̃� 𝛼 𝑡−�̃� 𝑥−1+�̃� 𝛼 Γ(�̃�) Γ(1
2 − �̃� 𝛼

2 )
√𝜋 Γ( �̃� 𝛼

2 )
.

The back-transformation gives the solution of the
problem (37) and can be regarded as [13]

𝑃(𝑡, 𝑥) = (43)
1√𝜋 |𝑥| ℋ1,1

2,1 [2𝛼 𝐷𝑡
|𝑥|𝛼 ∣ {{1

2 , 𝛼
2 }} | {{0, 𝛼

2 }}
{{0, 1}} | {} ] .

Considering the case 𝛼 = 1 the solution is

𝑃(𝑡, 𝑥) = (44)
1√𝜋 |𝑥| ℋ1,1

2,1 [2 𝐷 𝑡
|𝑥| ∣ {{1

2 , 1
2}} | {{0, 1

2}}
{{0, 1}} | {} ] .

In order to simplify this expression a Mellin-
transformation from 𝐷 to �̃� is applied. The result
is

ℳ�̃�
𝐷(𝑃 (𝑡, 𝑥)) =

𝑡−�̃�𝑥−1+�̃�Γ(1
2 − �̃�

2 )Γ(1
2 + �̃�

2 )
2𝜋 .

The inverse Mellin-transformation gives

𝑃(𝑡, 𝑥) = 𝐷 𝑡
𝜋 (𝑥2 + (𝐷𝑡)2) , (45)

which is the Cauchy distribution function. In the case
𝛼 = 2 the solution can be represented as

𝑃(𝑡, 𝑥) = (46)
1√𝜋 |𝑥| ℋ1,1

2,1 [22 𝐷𝑡
|𝑥|2 ∣ {{1

2 , 1}} | {{0, 1}}
{{0, 1}} | {} ] .

Applying to this solution the Mellin-transformation
from 𝐷 to �̃� one finds

ℳ�̃�
𝐷(𝑃 (𝑡, 𝑥)) =

4−�̃� ( 𝑡
𝑥2 )−�̃� Γ (1

2 − �̃�)
√𝜋

√
𝑥2 ,

which leads after transforming this expression back to
the original space via inverse Mellin-transformation
to

𝑃(𝑡, 𝑥) = 1
2
√

𝜋 𝐷 𝑡
exp (− 𝑥2

4𝐷𝑡) , (47)

which is the Gaussian distribution function.

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2020.15.18 Joerg Volkmann, Norbert Suedland, Nail Migranov 

E-ISSN: 2224-3461 142 Volume 15, 2020



In general a Lévy-stable distribution is defined
through its characteristic function of the probability
density [16], that is, its Fourier transform

𝑝𝛼,𝛽(𝜔; 𝜇, 𝜎) = ℱ𝜔
𝑥(𝑝𝛼,𝛽(𝑥; 𝜇, 𝜎)) (48)

= ∫
∞

−∞
𝑒𝑖 𝜔 𝑥𝑝𝛼,𝛽(𝑥; 𝜇, 𝜎)𝑑𝑥

= exp (𝑖 𝜇 𝜔 − 𝜎𝛼 |𝜔|𝛼 (1 − 𝑖 𝛽 𝜔
|𝜔|𝜔(𝜔, 𝛼)))

with

𝜔 = {tan(𝜋 𝛼
2 ) if 𝛼 ≠ 1, 0 < 𝛼 < 2

− 2𝜋 ln (|𝜔|) if 𝛼 = 1 .

The case 𝛼 = 2 leads to the Gaussian distribution,
𝛼 = 1, 𝛽 = 0 to the Cauchy distribution and 𝛼 =
1
2 , 𝛽 = 1 to the Lévy-Smirnov distribution

𝑝 1
2 ,1(𝑥) = {

1√
2 𝜋𝑥− 3

2 exp (− 1
2𝑥) 𝑥 ≥ 0

0 𝑥 < 0 . (49)

2 The Lévy Distribution
In recent years, the Lévy distribution has been de-
veloped to study many physical phenomena, such as
anomalous diffusion [6], power law response of ma-
terial [24], aging in glassy systems [25], and so on
[26]. This distribution has also been applied to Lévy
glasses, to the turbulence in two spatial dimensions,
and in pulsar scintillation [27], to the transport of
carrier in disordered semiconductors [28]. The re-
lated random walk model is the so-called Lévy flight,
named after the French mathematician Paul Pérre
Lévy (1886 - 1971).

Here, the increments are described according to
a heavily tailed probability distribution. This kind
of models is adequate to the description of transport
in heterogeneous catalysis, self diffusion in miscel-
laneous systems, reactions and transport in polymer
systems under conformational motion, in transport
processes in heterogenous rocks, and for description
of behaviour of dynamical systems. Lévy’s statistics
were observed in hydrodynamic transport [29].

In the previous part we determine the fundamental
solution of the Cauchy-problem (37) and found the
Lévy distribution (49) for the case 𝛼 = 1

2 , 𝛽 = 1.
This can be generalized to the form 50 from [30],
where 49 can be recoverd by setting 𝜇 = 0, 𝜎 = 1.
The initial Lévy distribution can be regarded as [30]

𝑓(𝑥) = √ 𝜎
2 𝜋

exp(− 𝜎
2 (𝑥−𝜇))

(𝑥 − 𝜇) 3
2

. (50)

A more general form is [31], [32]

𝑓(𝑥) = 𝜎𝑘

Γ(𝑘)
exp(− 𝜎

(𝑥−𝜇))
(𝑥 − 𝜇)1+𝑘 . (51)

From this generalization 49 can be obtained by 𝜇 =
0,𝑘 = 1

2 ,𝜎 = 1
2 .

2.1 Discussion of Parameters
The investigation starts with the Lévy distribution
(50). Here can be found the two parameters 𝜎 and
𝜇. As shown in figure (Fig. 1), 𝜎 represents a scaling
with the assumption 𝜎 > 0.

Figure 1:
The Lévy distribution (50) with fixed 𝜇 and varying

𝜎.

Figure 2:
The Lévy distribution (50) with fixed 𝜎 and varying

𝜇.

Furthermore, figure (Fig.2) shows, that 𝜇 is re-
sponsible for a translation in 𝑥 direction with 𝜇 ∈ ℝ.
For the domain is valid: 𝐷 = {𝑥|𝑥 ≥ 𝜇}, due to the
square root in the denominator.

2.2 Momenta with the momentum integral
in infinite boundaries

In analogy to the procedure which we have done with
the time fractional diffusion equation, the momenta
in infinite boundaries for the solutions should also be
determined here in order to be able to judge the quality
of diffusion processes.

Now, the momenta 𝑚𝑖 for the distribution (50) are
calculated, whereby 𝑖 is their order. To use the inte-
gral representation, the boundaries have to be changed
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according to the area of the domain. The result is

𝑚𝑖 = ∫
∞

𝜇
√ 𝜎

2 𝜋
𝑥𝑖 exp(− 𝜎

2 (𝑥−𝜇))
(𝑥 − 𝜇) 3

2
d𝑥. (52)

After the substitution 𝑥 − 𝜇 = 𝜉 can be found

𝑚𝑖 = √ 𝜎
2 𝜋 ∫

∞

0

(𝜉 + 𝜇)𝑖 exp(− 𝜎
2 𝜉)

𝜉 3
2

d𝜉. (53)

The application of the binomial theorem leads to

𝑚𝑖 = (54)

√ 𝜎
2 𝜋 ∫

∞

0

𝑖
∑
𝑗=0

(𝑖
𝑗) 𝜉𝑗 𝜇𝑖−𝑗

exp(− 𝜎
2 𝜉)

𝜉 3
2

d𝜉.

Here, the binomial sum is finite. Furthermore, sum-
mation and integration are swapped. The result is for
the real part ℜ(𝑗) < 1

2 by use of the confluent hyper-
geometric function

𝑚𝑖 =
𝑖

∑
𝑗=0

2−𝑗 𝜇𝑖−𝑗 𝜎𝑗 (𝑖𝑗)Γ (1
2 − 𝑗)√𝜋 (55)

= 𝜇𝑖
1𝐹1 (−𝑖, 1

2, 𝜎
2 𝜇) .

Due to the fact, that the real part of 𝑗 is ℜ(𝑗) < 1
2 , the

only acceptable momentum is the norm 𝑛 = 𝑚0 = 1.
The higher momenta diverge for infinite boundaries.
The values, that are found by the formula (55) for
higher momenta, are analytical continuations only, e.
g. the first momentum 𝑚1 by formula (55) yields

𝑚1 = 𝜇 − 𝜎, (56)

which is obviously nonsense, because with norm 𝑛 =
𝑚0 = 1 the first momentum is the expectation value,
which is a generalized center of gravity and therefore
never can be outside the definition range 𝑥 ≥ 𝜇 of the
corresponding function (50). With negative 𝜎 how-
ever, the momentum integral (54) diverges even for
the norm 𝑛 = 𝑚0.

2.3 Momenta with momentum generating
function in infinite boundaries

In order to take into account the quality gate, the cal-
culation of the momenta is done using the momentum
generating function, which is of the form

𝑔(𝑡) = ∫
𝑏

𝑎
𝑒𝑡 𝑥 𝑓(𝑥)d𝑥. (57)

For the momenta follows

𝑚𝑖 = 𝜕𝑖

𝜕𝑡𝑖 (𝑔(𝑡))∣
𝑡→0

. (58)

The application to the Lévy distribution (50) for the
real part ℜ(𝜎) > 0 and ℜ(𝑡) < 0 leads to

𝑔(𝑡) = ∫
∞

𝜇

exp (𝑡 𝑥 − 𝜎
2 (𝑥−𝜇))

√𝜎
√

2 𝜋 (𝑥 − 𝜇) 3
2

d𝑥

= ∫
∞

0

exp (𝑡 (𝜇 + 𝜉) − 𝜎
2 𝜉) √𝜎

√
2 𝜋 𝜉 3

2
d𝜉

= exp (𝜇 𝑡 − i
√

2 𝑡 𝜎) . (59)

The case 𝑡 → 0 can be used by a limit discussion,
where needed. Therefore then the norm 𝑛 is

𝑛 → 𝑚0 = exp (0) = 1. (60)

The first momentum however diverges by 𝑡 → 0:

𝜇 → 𝑚1 =

exp (𝜇 𝑡 − i
√

2 𝑡 𝜎) (𝜇 − i √𝜎√
2 𝑡)∣

𝑡→0
.(61)

2.4 Special case of Lévy distribution and
some properties

For the special case of 𝜇 = 0, the Lévy distribution is
of the form

𝑓(𝑥) = exp (− 𝜎
2 𝑥) √𝜎√

2 𝜋 𝑥 3
2

. (62)

With the Lévy distribution (50), the result is valid
for the real part ℜ(𝜎) > 0 and ℜ(𝑖) < 1

2 , as before.
The general result

𝑚𝑖 = 2ℳ𝑖− 1
2𝑥 (exp (− 𝜎

2 𝑥) √𝜎√
2 𝜋 )

= 2 ∫
∞

0
𝑥𝑖− 1

2 −1 exp (− 𝜎
2𝑥) √𝜎

2𝜋 𝑑𝑥

= 2−𝑖 𝜎𝑖 Γ (1
2 − 𝑖)√𝜋 (63)

can be used for 𝑖 = 0 only and furthermore yields
𝑛 → 𝑚0 = 1.

The first momentum does not exist. Due to the fact
that all momenta like variance, asymmetry are nor-
malized central momenta they do not exist, too.

Here, ℳ𝑧
𝑥(𝑓(𝑥)) indicates the Mellin transforma-

tion [33] of the function 𝑓(𝑥) from 𝑥 to 𝑧.
Concerning the asymptotes of the Lévy distribution is
noted, that the function

𝑓(𝑥) =
exp (− 𝜎

2 (𝑥−𝜇))
√𝜎

√
2 𝜋 (𝑥 − 𝜇) 3

2
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can be described by the asymptote

𝑎(𝑥) =
√𝜎√

2 𝜋 (𝑥 − 𝜇) 3
2

, (64)

since

lim
𝑥→∞

|𝑓(𝑥) − 𝑎(𝑥)| =

= lim
𝑥→∞

∣
exp (− 𝜎

2(𝑥−𝜇))
√𝜎

√
2 𝜋 (𝑥 − 𝜇) 3

2
−

√𝜎√
2 𝜋 (𝑥 − 𝜇) 3

2
∣

= 0.

2.5 Discussion of parameters for the second
kind of Lévy’s distribution

The second version (51) of the Lévy distribution is a
more general one and of the form

𝑓(𝑥) = 𝜎𝑘

Γ(𝑘)
exp(− 𝜎

(𝑥−𝜇))
(𝑥 − 𝜇)1+𝑘 .

Here, three parameters are included. A variation of
𝑘 rescales the curve (figure (Fig. 3)) and has to be
positive.

Figure 3:
The Lévy distribution (51) with fixed 𝜎, 𝜇 and

varying 𝑘.

According to [31], this parameter correlates with
the fractional order of a diffusion equation. The sec-
ond parameter 𝜇 ∈ ℝ generates a translation along the
𝑥-axis (figure (Fig. 4)), and the changing of 𝜎 also
leads to a rescaling (figure (Fig. 5)). This parameter
has to be positive, too. Furthermore from (51) can be
seen, that at 𝑥 = 𝜇 the function owns a singularity for
𝑘 ≥ 0.

In order to discuss the domain, 𝑥 ≥ 𝜇 is to be set,
even if the function (51) might be defined for some
cases of 𝑘 for a larger space. However, the norm 𝑛 =
𝑚0 = 1 must be fulfilled for all parameters 𝑘, 𝜇 and
𝜎.

Figure 4:
The Lévy distribution (51) with fixed 𝑘, 𝜎 and

varying 𝜇.

Figure 5:
The Lévy distribution (51) with fixed 𝑘, 𝜇 and

varying 𝜎.

The momenta of the Lévy distribution (51) are calcu-
lated in the following way:

2.6 Momenta of second Lévy distribution
with momentum integral

The momentum integral is

𝑚𝑖 =
∞

∫
𝜇

𝑥𝑖 exp (− 𝜎𝑥−𝜇) 𝜎𝑘

Γ(𝑘) (𝑥 − 𝜇)𝑘+1 d𝑥. (65)

After the substitution 𝑥 − 𝜇 = 𝜉, d𝑥 = d𝜉 follows

𝑚𝑖 =
∞

∫
0

(𝜉 + 𝜇)𝑖 exp (−𝜎
𝜉 ) 𝜎𝑘

Γ(𝑘) 𝜉𝑘+1 d𝜉. (66)
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Using the binomial theorem, this integral can be trans-
formed into

𝑚𝑖 =
∞

∫
0

𝑖
∑
𝑗=0

(𝑖
𝑗) 𝜉𝑗𝜇𝑖−𝑗

exp (−𝜎
𝜉 ) 𝜎𝑘

Γ(𝑘) 𝜉𝑘+1 d𝜉, (67)

and after swapping summation with integration, the
momentum 𝑚𝑖 can be regarded for the real parts
ℜ(𝜎) > 0 and ℜ(𝑘 − 𝑗) > 0 as

𝑚𝑖 =
𝑖

∑
𝑗=0

𝜇𝑖−𝑗 𝜎𝑗 (𝑖𝑗)Γ (𝑘 − 𝑗)
Γ(𝑘) =

= 1𝐹1 (−𝑖, 1 − 𝑘, 𝜎
𝜇) . (68)

With this, the following characteristic momenta 𝑚𝑖
are found for the generalized Lévy distribution with
𝑘 > 𝑖:

𝑛 → 𝑚0 = 1, 𝜇 → 𝑚1 = 𝜇 + 𝜎
𝑘−1 ,

𝜎2 → 𝜎2
(𝑘−2) (𝑘−1)2 , 𝜎3 → 4 𝜎3

(𝑘−3) (𝑘−2) (𝑘−1)3 .

Here the results for 𝑖 ≥ 1 have only formal character
due to the fact, that the conditions 𝑘 > 𝑖, 𝑘 > 0 and
𝑖 > 0 causes singularities for integer 𝑘, 𝑖.

2.7 Momenta of second Lévy distribution
with momentum generating function

Another way to calculate the momenta, can be done
by the momentum generating function:

𝑔(𝑡) = 𝜎𝑘

Γ(𝑘) ∫
∞

𝜇

exp(𝑡 𝑥 − 𝜎𝑥−𝜇)
(𝑥 − 𝜇)𝑘+1 d𝑥 (69)

= 𝜎𝑘

Γ(𝑘) ∫
∞

0

exp(𝑡 (𝜇 + 𝜉) − 𝜎
𝜉 )

𝜉𝑘+1 d𝜉

= 2 exp(𝑡 𝜇) (
√

−𝜎 𝑡)𝑘

Γ(𝑘) 𝐾𝑘 (2
√

−𝜎 𝑡) .

This result, containing the modified Bessel function
of the second kind, leads to the same result (68), but
not as easy as before.

3 The Cauchy Distribution
A second example of a distribution function, which is
not less important, is the Cauchy distribution. In lit-
erature it is also named after Augustin Cauchy and
Hendrik Lorentz as Cauchy-Lorentz distribution or
Lorentz distribution. It can be found as Breit Wigner
distribution, too. Its form is defined by a function of
the type

𝑓(𝑥, 𝑥0, 𝛾) = 1
𝜋 ( 𝛾

(𝑥 − 𝑥0)2 + 𝛾2 )

and arises similarly in the family of curves of third
order as ”Versiera di Agnesi” (see [4]) and also con-
cerning a Fourier cosine transform 𝐶ℱ𝜔

𝑡 of a function
𝑓(𝑡) = exp(−𝛼 |𝑡|) cos(𝜔𝑜 𝑡) (see [4])
𝐶ℱ𝜔

𝑡 {𝑓(𝑡)} ∼ 𝛼
𝛼2 + (𝜔 − 𝜔𝑜)2 + 𝛼

𝛼2 + (𝜔 + 𝜔𝑜)2 .

Physically, such kind of functions appear as cross sec-
tion of resonant nuclear scattering as form ([34])

𝜎(𝐸) ∼ (Γ
2 )2

(𝐸 − 𝐸0)2 + (Γ
2 )2 ,

as energy distribution for transient spectra of parti-
cles, and can be understood as resonance curves in
physics of particles, or as driven harmonic oscillator.

In the first part the fundamental solution was de-
termined for the Cauchy problem (37). By setting
𝛼 → 1 the Cauchy distribution (45) could be ob-
tained. The momenta of this function (45) are now
determined according to the time-fractional diffusion
equation, again to obtain information about the qual-
ity of such a diffusion process.

3.1 Parameters and properties of Cauchy
distribution

In this paper, the Cauchy distribution is considered in
the form

𝑓(𝑥, 𝜇, 𝜎) = 𝜎
𝜋

1
(𝑥 − 𝜇)2 + 𝜎2 , (70)

where 𝜇 and 𝜎 are parameters. By setting 𝜇 = 0, 𝜎 =
𝐷 𝑡 we arrive at (45). For this function the following
limits are valid:

lim
𝑥→∞

𝜎
𝜋

1
(𝑥 − 𝜇)2 + 𝜎2 = 0,

lim
𝑥→−∞

𝜎
𝜋

1
(𝑥 − 𝜇)2 + 𝜎2 = 0.

As can be seen in figure (Fig. 6), the variation of the
parameter 𝜇 with 𝜎 = 1 leads to a translation of the
maximum along the 𝑥-axis. Changes of the parameter
𝜎 with 𝜇 = 1 lead to different scaling (see figure (Fig.
7)). Due to the fact, that the function values are related
with probabilities, there is a need of 𝜎 > 0.

Concerning the asymptotes, the term

lim
𝑥→±∞

∣ 𝜎
𝜋 ((𝑥 − 𝜇)2 + 𝜎2)

− 𝜎
𝜋 (𝑥 − 𝜇)2 ∣

= 𝜎
𝜋 lim

𝑥→±∞
∣ 𝜎2

((𝑥 − 𝜇)2 + 𝜎2) (𝑥 − 𝜇)2 ∣

= 0 (71)
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Figure 6:
The Cauchy distribution (70) with fixed 𝜎 and

varying 𝜇.

Figure 7:
The Cauchy distribution (70) with fixed 𝜇 and

varying 𝜎.

leads to the asymptote

𝑎(𝑥) = 𝜎
𝜋 (𝑥 − 𝜇)2 (72)

of the Cauchy distribution.

3.2 Momenta of Cauchy’s distribution by
momentum integral

Now, for this distribution the momenta are calculated.
The related integrals

𝑚𝑖 =
∞

∫
−∞

𝑥𝑖 𝜎
𝜋

1
(𝑥 − 𝜇)2 + 𝜎2 d𝑥 (73)

have to be calculated according to definition 2. In or-
der to avoid problems, first a primitive for the mo-

menta is determined. Starting with the substitution
𝑥 − 𝜇 = 𝜉, d𝑥 = d𝜉, this leads to

𝑚𝑖 =
∞

∫
−∞

(𝜉 + 𝜇)𝑖 𝜎
𝜋

1
𝜉2 + 𝜎2 . (74)

The binomial theorem is applied again, and integra-
tion and summation are swapped. Thereby results

𝑚𝑖 = 𝜎
𝜋

𝑖
∑
𝑗=0

(𝑖
𝑗) 𝜇𝑖−𝑗

∞

∫
−∞

𝜉𝑗

𝜉2 + 𝜎2 d𝜉. (75)

Now, the integrand is symmetrical for even 𝑗 and anti-
symmetrical for odd 𝑗. Thus, the odd 𝑗 can be omitted
by 𝑗 → 2𝑗 and 𝑖 → [ 𝑖

2 ], where the Gaussian bracket
function [𝑛] gives an integer [𝑛] ≤ 𝑛. By this results
𝑗 = 0:

𝑚𝑖 = (76)
[ 𝑖

2 ]
∑
𝑗=0

( 𝑖
2 𝑗) 𝜇𝑖−2 𝑗 𝜎2 𝑗 Γ (1

2 − 𝑗) Γ (1
2 + 𝑗) .

The momenta diverge for 𝑗 > 0 . Therefore, the norm
𝑛 = 1 and the expectation value 𝜇 → 𝜇 can be used
only. The formal variance 𝜎2 → −𝜎2 is negative,
which has no meaning.

3.3 Momemta of Cauch’s distribution by
momentum generating function

In order to fulfill the quality gate, being described
above, the way using the momentum generating func-
tions leads to

𝑚𝑖 = 𝜕𝑖

𝜕𝑡𝑖 [∫
∞

−∞
𝑒𝑡 𝑥 𝑓(𝑥)d𝑥]∣

𝑡→0
(77)

= 𝜕𝑖

𝜕𝑡𝑖 [∫
∞

−∞
𝑒𝑡 𝑥 𝜎

𝜋
1

(𝑥 − 𝜇)2 + 𝜎2 d𝑥]∣
𝑡→0

.

This integral leads to the exponential integral function
and causes more complicate results than (76).

4 Discussion and Conclusion
In the previous sections the statistical momenta of
various fractional diffusion equations are considered.

For the time fractional equation the general ex-
pression for the momenta of 𝑚-th order was found
in accordance to the quality gate. This is of the form

𝑀(𝑚) = 𝑎 𝑚
2 𝑡 𝑚𝛼

2 Γ(1 + 𝑚)
Γ(1 + 𝑚𝛼

2 ) . (78)
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From this the significant momenta like expectation
value, variance and asymmetry are determined. For
the norm the result is

𝑛 = 𝑀(0) = 1. (79)

The expectation value is usually represented as the
first normalized momentum. One finds

𝜇 = 𝑀(0)
𝑀(1) =

√𝑎𝑡 𝛼
2

Γ(1 + 𝛼
2 ) . (80)

Figure 8:
Expectation value of the solution (11) of

time-fractional diffusion equation with varying 𝛼
and 𝑎 = 98 ∗ 10−6 .

If one looks at the graphical representation for dif-
ferent values of 𝛼 one finds different root functions
whose steepness increases with increasing 𝛼.

Furthermore, it can be seen that the functions for
the expectation value are monotonically increasing
with time. Howevery, since this quantity can be in-
terpreted as a thermal center, the question of model
alternatives is raised here, because in experiments it
does not move only in one direction.

The variance is from statistical point of view de-
fined as the central normalized second momentum. It
is

𝜎2 = 𝑀(2)
𝑀(0) − 𝑀(1)2

𝑀(0)2

= 𝑎𝑡𝛼 (− 1
Γ(1 + 𝛼

2 )2 + 2
Γ(1 + 𝛼)) .(81)

Due to the fact that 𝛼 is in [0, 1] we have root
functions for this quantity, too. These are also
monotonously increasing.

Furthermore it should be pointed out, that in liter-
ature the variance is equated with the second momen-
tum (see e. g. [15, 35, 36]. Using the definition from
statistics, according which the variance is the second
normalized central momentum, other proportionality
constants result, which stand ahead of the time power.

Figure 9:
The Variance of the solution (11) of time-fractional
diffusion equation with varying 𝛼 and 𝑎 = 98 ∗ 10−6

.

The asymmetry is the central normalized third mo-
mentum with

𝜎3 = 𝑀(3)
𝑀(0) − 3𝑀(2)𝑀(1)

𝑀(0)2 + 2𝑀(1)3

𝑀(0)3

= 2𝑎 3
2 𝑡 3𝛼

2 ( 1
Γ(1 + 𝛼

2 )3 − 3
Γ(1 + 𝛼

2 )Γ(1 + 𝛼)+

3
Γ(1 + 3𝛼

2 )) . (82)

Figure 10:
The Asymmetry of the solution (11) of

time-fractional diffusion equation with varying 𝛼
and 𝑎 = 98 ∗ 10−6 .

The arithmetic expression is again proportional to
a power of the time 𝑡, whereby 𝛼 is included in the ex-
ponent. The asymmetry also represents amonotonous
function in 𝑡 for 𝛼 ∈ [0, 1].

The consideration of all momenta makes clear
that model extensions and alternatives are needed to
describe real experiments with this theory, because
measurements on heat conduction will show that the
statistical momenta expectation value, variance and
asymmetry are anything but monotonous functions.

Furthermore, at this point the question must be
asked whether it is at all permissible to compare a
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theory in infinite boundaries with experimental data
in finite boundaries.

The second equation which has been investigated
had a space-fractional derivative which has been de-
scribed using the Riesz operator. The result was the
Lévy - and Cauchy distribution for special choices
of the derivative parameter 𝛼. For both distributions
the momenta in infinite boundaries were determined.
Here, however, it was shown that some of them did
not exist at all. There is also the discrepancy that the-
oretical momenta do not exist but measured ones can
be determined.

This suggests in a first step the extension of the
theory to momenta in finite boundaries. Hereby the
existence of the momenta for the solution of the
space-fractional differential equation (36), which are
Lévy distribution and Cauchy distribution, is estab-
lished.

Furthermore, theory and experiment have to be
combined. Another forthcoming paper discusses this
on the basis of a heat conduction experiment.
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